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IN AFFECTION Ai'<D ESTLEM

1

Let A= (a"'/1') be a positive regular matrix; by A we denote the set of
sequences limited by A and by Ao those sequences limited to zero by A.
If {tn} is a bounded sequence and {~"S,,} c Ao whenever {S,,} c Ao • then
{tn} ~= t is called an Fsequence for the matrix A (a",,,). The set of
i-sequences will be denoted by AI). The set AI) should not be confused with
A*, the set of factor sequences for A (amn). A factor sequence, [5,7], is
defined in terms of bounded sequences {SIlL whereas here we place no
restriction on {S,,}. In this paper we shall use i-sequences as a means of
establishing Tauberian conditions for regular matrices. The method developed
applies to any regular matrix but in this paper it is applied only to Riesz
and N0rlund means. The conditions obtained for these means in Section 5
are already well known, see [8], but the present approach is easy and
efficient.

If t and' both belong to N!, then it is clear that {tne'"Sl1)} E Ao for all
{Sri} E AI) . From this it follows that H is in AO and it is also easy to show
that at + b' E AO where a and b are scalars. The unit sequence u l. 2, ...
also belongs to AU.

If B:J A, then the matrix B (b,,,.,,) is said to be a-stronger than the
matrix A (am .n), if Bo:J Ao we shall say B (b",.n) is c-stronger than
A c= (om.,,). If B:J A then every bounded sequence limited to zero by
A ~-~ (O",.rI) is limited to zero by B == (b m .n), see [6, p. 85]. However, B:J A
does not imply Bo:J AI) , see [6, p. 86].

We prove:

THEOREM 1. Let A = (am,n) be a positive regular matrix and t a bounded
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sequence such that ('2 ~ ~n C1 > 0; then ~ is an f-sequence if and only if
Bo:::J Ao, where

(1)

(111, n ~, 1, 2, ... ).

Proal We note

C1 i: am . n ~ I I am,n~n I
n=l n~:::l

C2 I, am . n
tl-;:,~-l

(2)

so that if s r= Ao and ~ is an j-sequence, then s r= Bo . On the other hand,
Bo:::J Ao implies ~s r= Ao whenever s EO' Ao.

If ~ is an f-sequence, then for some real number a, there exist C1 > 0,
C2 > °such that C1 .~ aUn + ~n c 2 , (n = 1,2, ...). Hence, when testing
a vector space including the unit sequence for i-sequences, we need only
look at those satisfying such a condition.

2

A triangular matrix A = (ail/,n) is called an M'-matrix if for some K > 0,

Kit an',kS" I
le .•1

for some n', n' = n'(n) (0 's: n' n) and for all m. The number n' depends
on nand {Sn} but is independent of m.

The concept of an M matrix extends to non-regular matrices. It may turn
out that not only is A == (am,n) an M' matrix but that C = (cm . n) is anM
matrix. where

C.m,n = !(In) a.rn .n and f(m) t w.

Such a function f(m) we shall call a regulating function. The following
theorem may be found in [4, 6]; see also [I, 8].

THEOREM 2. Letf(m) be a regulating/unction for the positive regular and
triangular M matrix A = (am.n ). If B = (bm,n) is a second regular triangular
matrix such that,

_1_ f fen) I bm,n - bm,n+1 I c:;;, M
f(m) n~1 am.n am,n"!

(b ,l1 ,m+l!am.m+1 = °by convention) then Bo:J Ao .

(3)
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We now prove:

G. M. PETERSEN

TlIEOHE:\1 3. Let f(m) be a regulating jlmctioll for The pusitive regular

triangular /1,1 matrix A (a",.n)' Then if

0((/(11: 1)- f(n));f(n)),

thell t; is all j~sequellce j(Jr A.

Proof Let B (b",.n) be defined as in (1), then we must show (3) to be
true. Since (2) may be assumed, we must in effect show

but this is true if

This last statement follows immediately from the hypothesis.

3

Suppose {til} is a bounded sequence such that tn == 0, n C;-' ill.: where

then t is called a thin sequence. Let t; be an .f~sequence whenever

it" - gnl] = O(g(n»).

where lim ll _, g(n) ~~ O. Further, let S L AI) and 15" -- SII! l O( g(n)).

If S is bounded and A is a positive matrix, then S r t where r is
convergent to zero and t is thin, see [5]. If S is unbounded, Vie define

I:
Sn

and
gn = 5n

If Sk I, and l < SI+! < I, then

whenever i 5 n

whenever Sn i 1.

Mg(k);

ilyfg(k);
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and I t;. - g;'H , :(; 2Mg(k). A similar investigation for the other possible
combinations of values of Sk' SkH shows that I g" - g;'+l i == O(g(k). It
follows that gs E Au, but g"sn 1 whenever: Sn i ); 1, {;nS" S,,2 whenever
, SIt I < 1. It follows that if A is a positive matrix gs can be expressed in
the form r+ t where r converges to zero and t is thin. It then follows after
some consideration that S can be expressed in this form.

Before leaving this proof, we observe that the set of factor sequences
form a Banach Algebra and this fact is used in proving that if S is both a
factor sequence and is limited to zero, then s r -+ t. The set off-sequences
is not necessarily complete. Suppose S converges to zero; let S,/ ,S",
II < k, SIll: =~ S;. , II k. Then

sup [ S"i - S"i [ E,

I,j N. Also, Si -- S II < E for i > N. However, if a is an unbounded
sequence limited to zero by A, Sl'a will always be limited to zero (k c'c 1,2, ...)
but if I an : is not limited and S == {sign a,,!(a,,)1(2} then Sa is not limited
to zero by A.

4

We have seen that if S is an j~sequence for a regular matrix A = (am,n)

and S EO A, then S == r + t where r is convergent and t is thin. For converse
results see [2, 3]. Thus, if the set of i-sequences is known we often have a
good starting point for finding Tauberian conditions for the matrix. Before
applying this technique to some examples, however, it is well to look at one
case where the technique does not work.

Let A (ail/.,,) be the matrix defined by the transformations

(11= 1.2•... ). Then A limits any sequence satisfying S2n ~= -S2n~1 to zero.
Suppose g is an[-sequence and

~2n - g:!rI :1 :~-= t2n'

then

Since for all bounded g,
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we need only choose S so that

does not exist in order to show gis not anlsequence. This is always possible
unless E2n 0, n N. From this we would conclude that S2n S2n;1 ,

n > N is a Tauberian condition for A since there are clearly no thin sequences.
On the other hand,

lim I S2n S2n II 0,
n-)./:.

is a Tauberian condition for A, and the technique IS III this case very
inefficient.

5

Let R(p,,) be the Riesz mean defined by

where P n = L;;I Ph, Pic :> 0 (k 0, 1,2, ... ), P n too. Keeping the same
notation and restrictions on Pn and Pn , the N0rlund mean is given by

The Riesz mean is an M matrix and the N0flund mean is an M matrix if
the additional conditions Pn Pn-l and

P,'/PI/l Pn -1!Pn _'r

(n = 1,2,... ) are satisfied, see [6, p. 76]. For both types ofmatricesj(n) Pn

is a regulating function and ~ is an f:sequencc if

o (~n ),
In'

as in Theorem 3.
Let R(P.rJ be defined by Pn e(fLI/)' [eX e(x)] where

II ---
j, -1 AI;

An to.
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Then, we have

On the other hand, we have

];., Pn - 1'n- 1o--1 ] ( )P L. Pr = p = - e fLn-k-1 - fkm
n r=n-k 11-

?i(_1_+ ... +_1).
2 An~/., An

Hence,

151

n

1'n r~~lPr

and from this it follows that if

] n P
2 I ;

r='n-]; r

then : Sn - Sn-k I > 1,

implies l/Pn L~~n-kPr > i and S is not thin. Hence O(Pn/Pn) is a Tauberian
condition for R(Pn).

Let N(Pn) be the N0r1und mean defined byPn = /1-1/2. Then Pn/Pn ='" OO/n)
and if

then k ?: en for some e > O. Also, we have

But

P <' 1 + fn dx < 2( )1 '2
n ~ 1 (x)li2 ~ n!

and

k ("+1 dx
r~o Pr ? "1 (X)-1/2;;?o 2(k + 1)1/2 - 2,

so that if k ?" en

n >N.
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From this we conclude that if Sis anf-sequence it is convergent and O(l/n)
is a Tauberian condition for N(Pn)' A similar analysis shows 0(1/11) to be
a Tauberian condition for N(Pn) generated by Pn 11'. 1 ): .•-;: O.

Using the techniques developed in (2). it could be shown in most cases
that the conditions obtained here for Riesz and Norlund means are best
possible. We have already secn that the class ofFsequences always determines
a Tauberian conditions, though the example in Section 4 shows that for
some matrices the Tauberian conditions derived may be trivial and uninter
esting. If it were possible to find sufficient conditions on the matrix for the
method off-sequences to give the best possible conditions, then the value of
the technique would be greatly increased.
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